Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria.

نویسندگان

  • Florin Musat
  • Alexander Galushko
  • Jacob Jacob
  • Friedrich Widdel
  • Michael Kube
  • Richard Reinhardt
  • Heinz Wilkes
  • Bernhard Schink
  • Ralf Rabus
چکیده

The anaerobic biodegradation of naphthalene, an aromatic hydrocarbon in tar and petroleum, has been repeatedly observed in environments but scarcely in pure cultures. To further explore the relationships and physiology of anaerobic naphthalene-degrading microorganisms, sulfate-reducing bacteria (SRB) were enriched from a Mediterranean sediment with added naphthalene. Two strains (NaphS3, NaphS6) with oval cells were isolated which showed naphthalene-dependent sulfate reduction. According to 16S rRNA gene sequences, both strains were Deltaproteobacteria and closely related to each other and to a previously described naphthalene-degrading sulfate-reducing strain (NaphS2) from a North Sea habitat. Other close relatives were SRB able to degrade alkylbenzenes, and phylotypes enriched anaerobically with benzene. If in adaptation experiments the three naphthalene-grown strains were exposed to 2-methylnaphthalene, this compound was utilized after a pronounced lag phase, indicating that naphthalene did not induce the capacity for 2-methylnaphthalene degradation. Comparative denaturing gel electrophoresis of cells grown with naphthalene or 2-methylnaphthalene revealed a striking protein band which was only present upon growth with the latter substrate. Peptide sequences from this band perfectly matched those of a protein predicted from genomic libraries of the strains. Sequence similarity (50% identity) of the predicted protein to the large subunit of the toluene-activating enzyme (benzylsuccinate synthase) from other anaerobic bacteria indicated that the detected protein is part of an analogous 2-methylnaphthalene-activating enzyme. The absence of this protein in naphthalene-grown cells together with the adaptation experiments as well as isotopic metabolite differentiation upon growth with a mixture of d(8)-naphthalene and unlabelled 2-methylnaphthalene suggest that the marine strains do not metabolize naphthalene by initial methylation via 2-methylnaphthalene, a previously suggested mechanism. The inability to utilize 1-naphthol or 2-naphthol also excludes these compounds as free intermediates. Results leave open the possibility of naphthalene carboxylation, another previously suggested activation mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome Sequence of the Deltaproteobacterial Strain NaphS2 and Analysis of Differential Gene Expression during Anaerobic Growth on Naphthalene

BACKGROUND Anaerobic polycyclic hydrocarbon (PAH) degradation coupled to sulfate reduction may be an important mechanism for in situ remediation of contaminated sediments. Steps involved in the anaerobic degradation of 2-methylnaphthalene have been described in the sulfate reducing strains NaphS3, NaphS6 and N47. Evidence from N47 suggests that naphthalene degradation involves 2-methylnaphthale...

متن کامل

Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture.

The sulfate-reducing culture N47 can utilize naphthalene or 2-methylnaphthalene as the sole carbon source and electron donor. Here we show that the initial reaction in the naphthalene degradation pathway is a methylation to 2-methylnaphthalene which then undergoes the subsequent oxidation to the central metabolite 2-naphthoic acid, ring reduction and cleavage. Specific metabolites occurring exc...

متن کامل

Polycyclic Aromatic Hydrocarbon-Induced Changes in Bacterial Community Structure under Anoxic Nitrate Reducing Conditions

Although bacterial anaerobic degradation of mono-aromatic compounds has been characterized in depth, the degradation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene has only started to be understood in sulfate reducing bacteria, and little is known about the anaerobic degradation of PAHs in nitrate reducing bacteria. Starting from a series of environments which had suffered diffe...

متن کامل

Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment.

It has previously been demonstrated that [14C]-labeled polycyclic aromatic hydrocarbons (PAHs) can be oxidized to 14CO2 in anoxic, PAH-contaminated, marine harbor sediments in which sulfate reduction is the terminal electron-accepting process. However, it has not previously been determined whether this degradation of [14C]-PAHs accurately reflects the degradation of the in situ pools of contami...

متن کامل

Anaerobic Naphthalene Degradation by a Sulfate-Reducing Enrichment Culture

Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture was studied by substrate utilization tests and identification of metabolites by gas chromatography-mass spectrometry. In substrate utilization tests, the culture was able to oxidize naphthalene, 2-methylnaphthalene, 1and 2-naphthoic acids, phenylacetic acid, benzoic acid, cyclohexanecarboxylic acid, and cyclohex-1-ene-ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental microbiology

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2009